Certain monomial ideals whose numbers of generators of powers descend

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyubeznik Numbers of Monomial Ideals

Let R = k[x1, ..., xn] be the polynomial ring in n independent variables, where k is a field. In this work we will study Bass numbers of local cohomology modules H I (R) supported on a squarefree monomial ideal I ⊆ R. Among them we are mainly interested in Lyubeznik numbers. We build a dictionary between the modules H I (R) and the minimal free resolution of the Alexander dual ideal I∨ that all...

متن کامل

Gin AND Lex OF CERTAIN MONOMIAL IDEALS

Let A = K[x1, . . . , xn] denote the polynomial ring in n variables over a field K of characteristic 0 with each deg xi = 1. Given arbitrary integers i and j with 2 ≤ i ≤ n and 3 ≤ j ≤ n, we will construct a monomial ideal I ⊂ A such that (i) βk(I) < βk(Gin(I)) for all k < i, (ii) βi(I) = βi(Gin(I)), (iii) βl(Gin(I)) < βl(Lex(I)) for all l < j and (iv) βj(Gin(I)) = βj(Lex(I)), where Gin(I) is t...

متن کامل

Betti numbers of transversal monomial ideals

In this paper, by a modification of a previously constructed minimal free resolution for a transversal monomial ideal, the Betti numbers of this ideal is explicitly computed. For convenient characteristics of the ground field, up to a change of coordinates, the ideal of t-minors of a generic pluri-circulant matrix is a transversal monomial ideal . Using a Gröbner basis for this ideal, it is sho...

متن کامل

Monomial Ideals with Primary Components given by Powers of Monomial Prime Ideals

We characterize monomial ideals which are intersections of powers of monomial prime ideals and study classes of ideals with this property, among them polymatroidal ideals.

متن کامل

6 Ju l 2 00 3 MONOMIAL IDEALS WHOSE POWERS HAVE A LINEAR RESOLUTION

In this paper we consider graded ideals in a polynomial ring over a field and ask when such an ideal has the property that all of its powers have a linear resolution. It is known [7] that polymatroidal ideals have linear resolutions and that powers of polymatroidal ideals are again polymatroidal (see [2] and [8]). In particular they have again linear resolutions. In general however, powers of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2021

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-021-01596-y